To content

Continuous Wave Spectroscopy

The Continuous Wave Spectroscopy laboratory is specialized in the observation of equilibrium states in semiconductor nanostructures. For that task the lab consists of two independent setups.

The first one is designed to be a multi-purpose setup allowing a wide variety of measuring techniques and a fast change between them. The techniques used consist of:

  • Magnetic-field-dependent Photoluminescence,
  • Photoluminescence Excitation,
  • Selective Excitation Spectroscopy,
  • Absorption/Transmission Spectroscopy,
  • Spin-flip Raman Scattering Spectroscopy,
  • as well as time-resolved variants of these techniques.

The main devices for the first setup consist of a split coil magnet cryostat and a triple-monochromator. The cryostat provides low temperatures for samples of about 1.8 Kelvin and high magnetic fields of up to 10 Tesla. The spectrometer used in this setup is a triple-monochromator. This spectrometer enables high resolution when it is driven in additive mode or it can be used as a variable optical filter with moderate resolution driven in substractive mode. For optical excitations multiple laser systems are installed in the continuous wave laboratory including Titanium Sapphire as well as Dye and solid state lasers. These laser systems provide wavelength continuously between 690 and 950 nm (Ti:Sapph) as well as broad excitation bands below 690 nm (dye solutions like DCM or Rhodamine 6G).


The second setup is specialized in Spin-flip Raman Scattering Spectroscopy. It consists of a split coil magnet cryostat enabling low temperatures down to 1.6 Kelvin and and a bipolar magnetic field in the range between -7 and +7 Tesla. The Spectrometer used in this setup is specially designed for the suppression of laser stray-light to analyze signals in the proximity of the laser itself. It has a focal length of 2 meters which grants a high resolution in combination with photomultiplier tubes or CCD-cameras for the detection.

Setup scheme of spin-flip Raman scattering spectroscopy © Dennis Kudlacik​/​TU Dortmund

Research topics:

Diluted magnetic semiconductor (DMS) nanostructures

In DMS structures ferromagnetic materials have been implanted in the matrix of semiconductor nanostructures. These DMS structures can be both II-VI (as (Zn,Mn)Se) or III-V (Mn-doped GaAs) semiconductors and can be grown as structures of lower dimensions like Quantum Wells (2d) or even Quantum Dots (0d). The main feature of these DMS materials is based on their strong coupling between their d-states and the s- or p-states of the semiconductor. This results in huge electro-optical effects as it can be seen in the Giant Zeeman Splitting which shifts the energy of electronic or hole spin states by several meV at moderate magnetic fields of a few Tesla.

Diagram of exciton energy versus magnetic field © Dennis Kudlacik​/​TU Dortmund
Confinement-driven indirect excitons in (In,Al)As Quantum Dots

The first and yet detailed characterization of newly developed semiconductor structures is one of the main goals in the continuous wave laboratory. One of the most successful studies regarding novel semiconductor structures are InAs Quantum Dots in an AlAs matrix. In an ensemble of Quantum Dots, small dots have indirect transitions in the k-space with very long exciton lifetimes in the range of tenth to hundreds of microseconds. Additional studies have proven that also their spin states are long-living which plays a key role in the storage of quantum information.

Two diagrams of photoluminescence intensity and photoluminescence energy versus excitation energy © Dennis Kudlacik​/​TU Dortmund
Spin-flip Raman scattering in low dimensional structures

In the field of Raman spectroscopy, materials are optically excited under resonant conditions. In the following a scattering process between the electro-magnetic wave and the material takes place in whose progress an excitation is absorbed/emitted increasing/decreasing the energy of the scattered electro-magnetic wave. Depending on the energy of the excitation the Raman signals can be found in close proximity to the laser line. In case of the Spin-flip Raman scattering the energy differences between electron spin states are in the center of interest. These states are split by a strong magnetic field field so that their energy difference can be described by the Zeeman splitting energy ΔE.

Scheme of spin-flip Raman scattering process © Dennis Kudlacik​/​TU Dortmund

In this technique the higher energy spin states are resonantly excited by laser light with a narrow spectral line. The scattering process in this situation is accompanied by a flip of the spin state to the lower energy state. When this scattered electron recombines with its corresponding hole the energy difference between excitation and detection describes directly the Zeeman splitting. With normal measuring methods these measurements would be suppressed by the much more intensive laser stray-light. The specialized spectrometers in the CW lab on the contrary can cut off this stray-light very efficiently so that it is possible to detect signals as close to the laser as 100 µeV.

Diagram of spin-flip Raman scattering intensity versus Raman energy shift © Dennis Kudlacik​/​TU Dortmund

The CW lab team has focused its research in the past especially on Spin-flip Raman Scattering measurements in low-dimensional structures like quantum wells and quantum dots.

 

Current Offers For Bachelor-, Master- or PhD-Theses

We offer Bachelor-, Master- and PhD-theses in relation to the ongoing research. Feel free to ask someone of the team for more information! Usually there is always a topic available.

Contact

  • Dr. Dennis Kudlacik
     

Collaborations

Location & approach

The campus of TU Dort­mund University is located close to interstate junction Dort­mund West, where the Sauerlandlinie A 45 (Frankfurt-Dort­mund) crosses the Ruhrschnellweg B 1 / A 40. The best interstate exit to take from A 45 is "Dort­mund-Eichlinghofen" (closer to Campus Süd), and from B 1 / A 40 "Dort­mund-Dorstfeld" (closer to Campus Nord). Signs for the uni­ver­si­ty are located at both exits. Also, there is a new exit before you pass over the B 1-bridge leading into Dort­mund.

To get from Campus Nord to Campus Süd by car, there is the connection via Vogelpothsweg/Baroper Straße. We recommend you leave your car on one of the parking lots at Campus Nord and use the H-Bahn (suspended monorail system), which conveniently connects the two campuses.

TU Dort­mund University has its own train station ("Dort­mund Uni­ver­si­tät"). From there, suburban trains (S-Bahn) leave for Dort­mund main station ("Dort­mund Hauptbahnhof") and Düsseldorf main station via the "Düsseldorf Airport Train Station" (take S-Bahn number 1, which leaves every 20 or 30 minutes). The uni­ver­si­ty is easily reached from Bochum, Essen, Mülheim an der Ruhr and Duisburg.

You can also take the bus or subway train from Dort­mund city to the uni­ver­si­ty: From Dort­mund main station, you can take any train bound for the Station "Stadtgarten", usually lines U41, U45, U 47 and U49. At "Stadtgarten" you switch trains and get on line U42 towards "Hombruch". Look out for the Station "An der Palmweide". From the bus stop just across the road, busses bound for TU Dort­mund University leave every ten minutes (445, 447 and 462). Another option is to take the subway routes U41, U45, U47 and U49 from Dort­mund main station to the stop "Dort­mund Kampstraße". From there, take U43 or U44 to the stop "Dort­mund Wittener Straße". Switch to bus line 447 and get off at "Dort­mund Uni­ver­si­tät S".

The AirportExpress is a fast and convenient means of transport from Dortmund Airport (DTM) to Dortmund Central Station, taking you there in little more than 20 minutes. From Dortmund Central Station, you can continue to the university campus by interurban railway (S-Bahn). A larger range of international flight connections is offered at Düsseldorf Airport (DUS), which is about 60 kilometres away and can be directly reached by S-Bahn from the university station.

The H-Bahn is one of the hallmarks of TU Dort­mund University. There are two stations on Campus Nord. One ("Dort­mund Uni­ver­si­tät S") is directly located at the suburban train stop, which connects the uni­ver­si­ty directly with the city of Dort­mund and the rest of the Ruhr Area. Also from this station, there are connections to the "Technologiepark" and (via Campus Süd) Eichlinghofen. The other station is located at the dining hall at Campus Nord and offers a direct connection to Campus Süd every five minutes.

The facilities of TU Dortmund University are spread over two campuses, the larger Campus North and the smaller Campus South. Additionally, some areas of the university are located in the adjacent "Technologiepark".

Site Map of TU Dortmund University (Second Page in English).