

Seminar Festkörperphysik (CMP Seminar)

Aktuelle Probleme der Festkörperphysik für Studenten und Mitarbeiter 020236 Kolloquium/Seminar SS 24 Vorlesungszeit: 08.04.2024 – 19.07.2024

Thursday, 13.06.2024 12:10 - P1-01-306

Semiconductor nanowire array for 1D and 2D topological lasers

Sang Soon Oh

School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, United Kingdom

Topological photonics has recently expanded to include many fascinating areas of physics, for example, non-Hermitian systems such as topological lasers and parity-time symmetric topology, and non-Abelian topological charges. Among those, topological lasers have drawn attention because they provide a platform to study the interplay between light-matter interaction and topology of photonic bands. To demonstrate topological lasers, several different schemes have been employed, for example, a ring resonator array [1] and photonic crystal slabs [2]. In those, a top-down approach, which requires e-beam pattering and chemical etching, has been successful in fabricating such ring resonator arrays or air-hole type photonic crystals. However, the top-down approach suffers from large side wall roughness and is limited in achieving a high aspect ratio. As an alternative, selective area heteroepitaxy of highly ordered III-V nanowires on silicon-on-insulator (SOI) substrate provides a unique bottom-up platform to integrate on-chip light sources with silicon photonics.

In this talk, I will introduce some experimental efforts to make topological lasers using InGaAs semiconductor nanowire photonic crystals with deformed (expanded or compressed) honeycomb lattices. First, I will show the 1D Su-Schrieffer-Heeger lattice of nanowires lases with topological edge modes [3]. Then, I will show that room-temperature lasing is possible with quadrupolar modes in the expanded honeycomb structure [4], which could be associated with a bound state in the continuum. Finally, I will show emission with a very small beam divergence can be achieved with dipolar modes in the compressed honeycomb structure. We expect that the platform will be an excellent platform to demonstrate non-Hermitian topological photonics with spatially modulated pumping.

- [1] M. A. Bandres, et al., Science, Vol. 359, p. eaar4005 (2018).
- [2] C. Han, M. Lee, S. Callard, C. Seassal, and H. Jeon, Light Sci. Appl., Vol. 8, p. 40 (2019).
- [3] Y. Gong, L. Guo, S. Wong, A. J. Bennett, and S. S. Oh, Sci. Rep., Vol. 11, p. 1055 (2021).
- [4] C. Messina, Y. Gong, O. Abouzaid, B.-P. Ratiu, T. Grieb, Z. Yan, A. Rosenauer, S. S. Oh, and Q. Li, Adv. Opt. Mater. Vol. 11, p. 2201809 (2023).