RydEx 2024, Dortmund, Germany

Strong nonlinear terahertz responses of excitons in Cu₂O

Changqing Zhu¹, Anneke Reinold¹, Patrick Pilch¹, Sergey Kovalev¹, Julian Heckötter¹, Marc Assmann¹,

and Zhe Wang^{1,*} ¹Faculty of Physics, TU Dortmund University, 44227 Dortmund, Germany *zhe.wang@tu-dortmund.de

Excitons in Cu₂O have attracted significant attention due to their peculiar properties, such as the remarkable Rydberg series with the principal quantum number extending up to 30 [1, 2] and the realization of Bose-Einstein condensation [3]. We report on a time-resolved optical-pump terahertz-drive spectroscopic study of far-from-equilibrium states in Cu₂O. Strong terahertz third harmonic generation is observed and investigated as a function of the pump- and drive-pulse fluences and by varying the pump-drive time delay. Owing to the sub-picosecond time resolution, we are able to identify two distinct third-order nonlinear terahertz responses in the time domain. By carrying out a systematic investigation of these responses, we can attribute the observed nonlinear responses to plasma and exciton dynamics, respectively.

References

[1] T. Kazimierczuk, D. Frohlich, S. Scheel, H. Stolz, and M. Bayer, Nature 514, 343 (2014).

[2] M. A. Versteegh, S. Steinhauer, J. Bajo, T. Lettner, A. Soro, A. Romanova, S. Gyger, L. Schweickert, A.

Mysyrowicz, and V. Zwiller, Physical Review B 104, 245206 (2021).

[3] Y. Morita, K. Yoshioka, and M. Kuwata-Gonokami, Nature Communications 13, 5388 (2022).

Acknowledgements

We acknowledge support by the European Research Council (ERC) under the Horizon 2020 research and innovation programme, Grant Agreement No. 950560 (DynaQuanta).